Lect. 4: MOSFET Frequency Response

Frequency Model for MOSFET

Lect. 4: MOSFET Frequency Response

Electronic Circuits 2 (07/1)
W.-Y. Choi

Lect. 4: MOSFET Frequency Response

How fast can a MOSFET transistor operate?
\rightarrow Unit-Gain Frequency $\left(\mathrm{f}_{\mathrm{t}}\right)$:
Frequency at which magnitude of the short-circuit current gain of CS configuration becomes 1

$\frac{I_{0}}{I_{i}}$ in frequency (ω) domain?

Lect. 4: MOSFET Frequency Response

$$
\begin{aligned}
& I_{0}=g_{m} V_{g s}-\frac{V_{g s}}{1 / j \omega C_{g d}}=g_{m} V_{g s}-j \omega C_{g d} V_{g s} \\
& \simeq g_{m} V_{g s}\left(\because g_{m} \gg \omega C_{g d}\right) \\
& V_{g s}=I_{i} \cdot\left(\frac{1}{j \omega C_{g d}} \| \frac{1}{j \omega C_{g s}}\right)=I_{i} \cdot \frac{1}{j \omega\left(C_{g d}+C_{g s}\right)} \\
& \therefore \frac{I_{0}}{I_{i}}=\frac{g_{m}}{j \omega\left(C_{g d}+C_{g s}\right)}
\end{aligned}
$$

Lect. 4: MOSFET Frequency Response

Unit-Gain Frequency $\left(\mathrm{f}_{\mathrm{t}}\right)$:
Frequency at which magnitude of the short-circuit current gain of CS configuration becomes 1

$$
\begin{aligned}
& \frac{I_{0}}{I_{i}}=\frac{g_{m}}{j \omega\left(C_{g d}+C_{g s}\right)} \\
& \text { For }\left|\frac{I_{0}}{I_{i}}\right|=1, \omega=\frac{g_{m}}{C_{g d}+C_{g s}} \\
& f_{T}=\frac{g_{m}}{2 \pi\left(C_{g d}+C_{g s}\right)} \text { (Unit-gain Frequency) }
\end{aligned}
$$

How to make MOSFET faster?
Which is faster, NMOS or PMOS?

Lect. 4: MOSFET Frequency Response

$\mathrm{L}=0.25 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1.5 \mathrm{~V}$

Lect. 4: MOSFET Frequency Response

$\mathrm{L}=0.25 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1.5 \mathrm{~V}$

$$
\begin{aligned}
C_{g d} & =C_{o x} \cdot W \cdot L_{o v} \\
C_{g s} & =\frac{2}{3} \cdot C_{o x} \cdot W \cdot L+C_{o x} \cdot W \cdot L_{o v} \\
f_{T} & =\frac{g_{m}}{2 \pi *\left(C_{g d}+C_{g s}\right)} \\
C_{o x} & =\frac{\varepsilon_{o x}}{t_{o x}}=\frac{3.97 * 8.85 * 10^{-12}[\mathrm{~F} / \mathrm{m}]}{5.6 * 10^{-9}[\mathrm{~m}]} \\
& =0.0063\left[\mathrm{~F} / \mathrm{m}^{2}\right] \\
L_{o v} & =\frac{C_{G D O} C_{G S O}}{C_{O X}} \\
& =\frac{4.59 * 10^{-10}[\mathrm{~F} / \mathrm{m}]}{0.0063\left[\mathrm{~F} / \mathrm{m}^{2}\right]}=7.28 * 10^{-8} \mathrm{~m}
\end{aligned}
$$

Electronic Circuits 2 (07/1)

Lect. 4: MOSFET Frequency Response

$$
\begin{aligned}
& \mathbf{L}=0.25 \mu \mathrm{~mm}, \mathrm{~W}=10 \mathrm{\mu m}, \mathbf{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathbf{V}_{\mathrm{GS}}=1.5 \mathrm{~V} \\
& C_{g d}=C_{o x} \cdot W \cdot L_{o v} \\
& C_{g s}=\frac{2}{3} \cdot C_{o x} \cdot W \cdot L+C_{o x} \cdot W \cdot L_{o v} \\
& C_{o x}=0.0063\left[\mathrm{~F} / \mathrm{m}^{2}\right] \\
& L_{o v}=7.28 * 10^{-8} \mathrm{~m} \\
& C_{g d}=4.59 * 10^{-15}[\mathrm{~F}] \\
& C_{g s}=1.51^{*} 10^{-14}[\mathrm{~F}] \\
& C_{g d}+C_{g s}=1.968 * 10^{-14}[\mathrm{~F}] \quad \\
& f_{T}=\frac{g_{m}}{2 \pi^{*}\left(C_{g d}+C_{g s}\right)}=\frac{i d}{2 \pi^{*}\left(1.968 * 10^{-14}\right)}=24.5 \mathrm{GHz}
\end{aligned}
$$

Electronic Circuits 2 (07/1)

